High energy gravitational scattering: a numerical study
نویسندگان
چکیده
The S−matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S−matrix down to the Schwarzschild’s radius R = 2G√s, where it diverges at a critical value b ≃ 2.25R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.
منابع مشابه
On high energy scattering inside gravitational backgrounds
We analyze the high energy scattering inside gravitational backgrounds using ’t Hooft’s formalism. The scattering is equivalent to geodesic shifts accross Aichelburg-Sexl waves inside the gravitational backgrounds. We find solutions for A-S waves inside various backgrounds and analyze them.
متن کاملNumerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملGravitational Scattering in the ADD-model at High and Low Energies
Gravitational scattering in the ADD-model is considered at both suband transplanckian energies using a common formalism. By keeping a physical cut-off in the KK tower associated with virtual KK exchange, such as the cut-off implied from a finite brane width, troublesome divergences are removed from the calculations in both energy ranges. The scattering behavior depends on three different energy...
متن کاملStudy of Solar Magnetic and Gravitational Energies Through the Virial Theorem
Virial theorem is important for understanding stellar structures. It produces an interesting connection between magnetic and gravitational energies. Using the general form of the virial theorem including the magnetic field (toroidal magnetic field), we may explain the solar dynamo model in relation to variations of the magnetic and gravitational energies. We emphasize the role of the gravitatio...
متن کاملEvolution of gravitational waves from inflationary brane-world : numerical study of high-energy effects
We study the evolution of gravitational waves(GWs) after inflation in a brane-world cosmology embedded in five-dimensional anti-de Sitter spacetime. Contrary to the standard four-dimensional results, the GWs at the high-energy regime in braneworld model suffer from the effects of the non-standard cosmological expansion and the excitation of the Kaluza-Klein modes(KK-modes), which can affect the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008